Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Yasuhito Miyake, ${ }^{\text {a }}$ Asao
 Hosoda, ${ }^{\text {b }}$ Eisaku Nomura ${ }^{b}$ and Hisaji Taniguchi ${ }^{\text {b* }}$

${ }^{\text {a }}$ Japan Science and Technology Corporation, 60 Ogura, Wakayama 649-6261, Japan, and ${ }^{\mathbf{b}}$ Industrial Technology Center of Wakayama Prefecture, 60 Ogura, Wakayama 649-6261, Japan

Correspondence e-mail:
taniguti@wakayama-kg.go.jp

Key indicators

Single-crystal X-ray study
$T=193 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.059$
$w R$ factor $=0.120$
Data-to-parameter ratio $=10.5$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

Ethyl 3-(4-geranyloxy-3-methoxyphenyl)-2-propenoate

The title compound, $\mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4}$, is known as a chemopreventive agent against colon tumor development. The molecular structure is nearly planar, showing a trans arrangement with respect to the $\mathrm{C}=\mathrm{C}$ bond of the phenylpropenoate moiety.

Comment

The title compound, (I), is known as a chemopreventive agent against colon tumor development (Tsuda et al., 1999). It was prepared from ferulic acid, which was easily prepared in large quantities from the oily component of rice bran (Taniguchi et al., 1996).

EGMP

The molecular structure of (I) is shown in Fig. 1, confirming the trans arrangement with respect to the $\mathrm{C} 7=\mathrm{C} 8$ double bond, similar to ferulic acid (Nethaji et al., 1988). The orientations of the phenyl ring and the geranyl group are defined by the torsion angles in Table 1. The molecule is nearly planar. The molecules in the crystal lattice are in a conventional herring-bone-type arrangement (Fig. 2). No close contacts were found that indicated any relevant intermolecular interaction.

Experimental

To a solution of $1.0 \mathrm{~g}(4.5 \mathrm{mmol})$ of ethyl ferulate, ethyl ester of ferulic acid, $1.2 \mathrm{~g}(4.6 \mathrm{mmol})$ of triphenylphosphine and 0.69 g (4.5 mmol) of geraniol in 10 ml anhydrous tetrahydrofuran was added $0.93 \mathrm{~g}(4.6 \mathrm{mmol})$ diisopropyl azodicarboxylate. The mixture was stirred for 5 min at room temperature and the solvent then removed under reduced pressure. After the residue was extracted with 30 ml of hexane, the hexane was removed under reduced pressure. Recrystallization from methanol gave the pure title compound (I) $(1.37 \mathrm{~g}, 85 \%)$. Crystals of (I) were obtained by slow evaporation of an ethanol solution at 277-279 K.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{22} \mathrm{H}_{30} \mathrm{O}_{4} \\
& M_{r}=358.48 \\
& \text { Triclinic, } P \overline{1} \\
& a=11.094(1) \AA \\
& b=11.943(1) \AA \\
& c=9.3399(9) \AA \\
& \alpha=110.864(5)^{\circ} \\
& \beta=113.510(5)^{\circ} \\
& \gamma=68.358(4)^{\circ} \\
& V=1022.5(2) \AA^{\circ}
\end{aligned}
$$

Received 9 August 2001
Accepted 16 October 2001
Online 20 October 2001

Figure 1
The molecular structure of (I) showing 50% probability displacement ellipsoids.

Data collection

Rigaku R-AXIS-RAPID imageplate diffractometer
ω scans
Absorption correction: multi-scan (Higashi, 1995)
$T_{\text {min }}=0.587, T_{\text {max }}=0.828$
5896 measured reflections

Refinement

Refinement on F
$R=0.059$
$w R=0.121$
$S=1.65$
3429 reflections
326 parameters
H -atom parameters constrained

3429 independent reflections
3094 reflections with $F^{2}>2.0 \sigma\left(F^{2}\right)$
$R_{\text {int }}=0.028$
$\theta_{\text {max }}=68.2^{\circ}$
$h=-13 \rightarrow 13$
$k=-14 \rightarrow 14$
$l=-11 \rightarrow 11$
$w=1 /\left[\sigma^{2}\left(F_{o}\right)+0.00403\left|F_{o}\right|^{2}\right]$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\text {max }}=0.51 \mathrm{e}^{\AA^{-3}}$
$\Delta \rho_{\text {min }}=-0.28$ e \AA^{-3}
Extinction correction: Zachariasen (1967) type 2 Gaussian isotropic Extinction coefficient: 0.39 (6)

Table 1
Selected torsion angles $\left({ }^{\circ}\right)$.

$\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)$	$180.0(1)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{C}(10)$	$-1.1(3)$
$\mathrm{O}(3)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$-17.8(2)$
$\mathrm{O}(4)-\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$	$3.2(3)$
$\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)-\mathrm{C}(14)$	$-178.2(1)$
$\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(12)$	$177.6(2)$
$\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)$	$179.4(1)$
$\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{O}(2)-\mathrm{C}(12)$	$-3.6(3)$
$\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$174.6(2)$
$\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$	$178.4(2)$
$\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(7)-\mathrm{C}(8)$	$-5.9(3)$
$\mathrm{C}(6)-\mathrm{C}(1)-\mathrm{O}(1)-\mathrm{C}(13)$	$0.6(2)$
$\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{C}(10)$	$178.9(1)$
$\mathrm{C}(9)-\mathrm{O}(4)-\mathrm{C}(10)-\mathrm{C}(11)$	$-177.5(2)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)$	$178.3(1)$
$\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(21)$	$-0.1(3)$
$\mathrm{C}(14)-\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)$	$-2.3(2)$
$\mathrm{C}(15)-\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)$	$-177.1(1)$
$\mathrm{C}(16)-\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)$	$170.5(2)$
$\mathrm{C}(17)-\mathrm{C}(16)-\mathrm{C}(15)-\mathrm{C}(21)$	$176.1(1)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(20)$	$179.6(2)$
$\mathrm{C}(17)-\mathrm{C}(18)-\mathrm{C}(19)-\mathrm{C}(22)$	$0.8(3)$

The measured fraction $\left(\theta_{\max }=68.2^{\circ}\right)$ of 0.917 is relatively low, which may be ascribed to either a short exposure time of the image plate or the instrument having only one rotation axis, leaving some parts of reciprocal space inaccessible.

Data collection: PROCESS-AUTO (Rigaku, 1998); cell refinement: PROCESS-AUTO; data reduction: TEXSAN (Molecular Structure Corporation, 1999); program(s) used to solve structure:

Figure 2
Projection down the c axis of the unit cell of (I)

SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: TEXSAN; software used to prepare material for publication: TEXSAN.

This study was performed through support from the Special Coordination Funds for Promoting Science and Technology (Leading Research Utilizing Potential of Regional Science and Technology) of the Ministry of Education, Culture, Sports, Science and Technology of the Japanese Government.

References

Higashi, T. (1995). ABSCOR. Rigaku Corporation, Tokyo, Japan.
Molecular Structure Corporation (1999). TEXSAN. Version 1.10. MSC, 9009 New Trails Drive, The Woodlands, TX 77381-5209, USA.
Nethaji, M., Pattabhi, V. \& Desiraju, G. R. (1988). Acta Cryst. C44, 275-277. Rigaku (1998). PROCESS-AUTO. Rigaku Corporation, Tokyo, Japan. Sheldrick, G. M. (1997). SHELXS97. University of Göttingen, Germany.
Taniguchi, H., Nomura, E., Tsuno, T., Minami, S., Kato, K., Hayashi, C. (1996). Japanese Patent No. 2095 088; US Patent (1994). No. 5288902.
Tsuda, H., Park, C. B., Takasuka, N., Toriyama, H., Sekine, K., Moore, M. A., Nomura, E. \& Taniguchi, H. (1999). Anticancer Res. 19, 3779-3782. Zachariasen, W. H. (1967). Acta Cryst. 23, 558-564.

